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Ultracold collisions for
Bose–Einstein condensation

By L. S. Butcher†, D. N. Stacey, C. J. Foot and K. Burnett

Clarendon Laboratory, Department of Physics, University of Oxford,
Parks Road, Oxford OX1 3PU, UK

We describe the low-energy scattering theory relevant to the description of the Bose–
Einstein condensed gases recently produced using evaporative cooling. We examine
the validity range of the approximations being used to describe the ultracold inter-
actions in the context of the interaction between caesium atoms at the temperatures
produced by evaporation in a magnetic trap. We discuss the prospects for future
developments in the field.

Keywords: laser cooling; evaporative cooling; Bose–Einstein condensation;
ultracold collisions; scattering length

1. Introduction

In July 1995, Anderson et al . (1995) reported the observation of Bose–Einstein con-
densation (BEC) in a gas of rubidium-87 atoms that had been trapped in a magnetic
field and cooled to 170 nK. BEC occurs when the thermal de Broglie wavelength of
the atoms is larger than their separation and leads to a rapid increase in the pop-
ulation of the lowest translational state available to the atoms. In the experiments
at JILA this was the ground vibrational state of the magnetic trap in which the
atoms were held. The exceptionally low temperatures required were reached using
a combination of laser and evaporative cooling (Burnett 1996) and the build-up of
atoms in the ground state was observed via the greatly enhanced density of atoms
that it produced in the trap centre. The alkali gases used are so dilute that the
interactions between the atoms do not appreciably alter the condensation process
from that one would expect to see in an ideal gas. Once a condensate is formed,
however, the interactions do affect the macroscopic properties that can be studied,
e.g. collective modes. The interactions between alkali atoms can still be described in
terms of binary ultracold collisions, and that is the subject we shall address in this
article. (Condensate lifetimes are also limited by three-body recombination but we
will only be able to take a cursory look at this process.) Although many aspects of
BEC have previously been studied in relation to superconductivity and superfluidity,
the evaporative cooling experiments were the first observation of the phenomenon in
a dilute atomic gas. Other reports of BEC in lithium-7 and sodium quickly followed
(Bradley et al. 1995; Davis et al. 1995). Since then, several other experimental groups
have produced condensates in rubidium and sodium.‡ Alkali gases have turned out

† Present address: Pilkington Technology Management, Hall Lane, Lathom, Ormskirk, Lancashire
L40 5UF, UK.
‡ For up-to-date information on BEC experiments and theory, one can consult the BEC Web site

maintained by Mark Edwards at Georgia Southern University (amo.phy.gasou.edu/bec.html/).
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to be the best systems for achieving BEC because of the possibility of cooling them
to microkelvin temperatures using laser cooling. At these very low temperatures,
they can be trapped in modest magnetic fields and cooled using evaporation. BEC
is reached at such low temperatures (i.e. where the atoms have such large de Broglie
wavelengths) that the density required is very low: typically below 1014 cm−3. Other
BEC experiments have used spin-polarized hydrogen, where the method of evapo-
rative cooling was first developed for trapped atoms. This subject is reviewed by
Walraven (1995). BEC has recently been achieved in hydrogen by Fried et al. (1998)
at MIT.

In this article we shall discuss aspects of collision physics relevant to the descrip-
tion of BEC observed in the alkalis. We shall discuss what aspects of low-energy
collision physics are relevant to the description of condensates and briefly outline
our present state of knowledge of them. This will include studies we have made of
the validity of low-energy approximations that have been used to date. We shall then
turn to the methods by which information on the interatomic potential relevant to
the ultracold collisions can be obtained, including our own work which involves high-
resolution molecular spectroscopy. The ultracold collision processes that one has to
study are providing a strong stimulus to the development of quantal collision theory
that can treat fully the complexities of multichannel systems. We shall focus on the
case of caesium to illustrate some of the complexities involved in studying the low-
temperature scattering involved in these studies. Caesium is of particular interest
as it is the element used in atomic clocks; the second being defined in terms of the
frequency of a hyperfine transition in caesium. Many experiments on laser cooling
and trapping of caesium have taken place in Oxford, Paris and elsewhere (Adams &
Riis 1997). Caesium atoms have also been evaporatively cooled but Bose–Einstein
condensation has not yet (as of April 1999) been observed in caesium. One of the
reasons for the difficulty of obtaining BEC in Cs is the lack of information on the
potential curves involved. This was the motivation for the work at Oxford on the
molecular spectroscopy of the caesium molecule. Before discussing the details, we
shall describe general aspects of the low-temperature collision physics which affects
BEC.

2. Collisions and the condensate

The behaviour of atoms in collisions at low temperatures can be represented in
many cases by a single parameter, the scattering length, α, if one can assume that
only a single channel is involved. Unlike the radius of an equivalent hard sphere,
the scattering length can have either positive or negative sign. A positive scattering
length corresponds to effectively repulsive interactions, and a negative scattering
length to effectively attractive interactions. The alkali gas condensates are dilute in
the sense that the scattering length is much (typically a thousand times) smaller than
the interparticle distance. This justifies the use of ‘first principles’ approaches to the
theory of the condensates based on the theory of the dilute Bose gas (Huang 1963).
Once one has a reliable determination of the scattering length one can proceed in
confidence with calculations of the macroscopic properties of the condensates such
as collective excitations. To see how this can be done in principle we shall discuss
how the scattering length enters into the description of the condensate. The energy
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of condensed atoms due to the presence of others is given by

n(r, t)U0. (2.1)

Here, U0 depends on the scattering length α, thus

U0 = h2α/2πm, (2.2)

and the density n(r, t) = |Ψ(r, t)|2 is given by the wave function shared by all the
atoms in the condensate. The evolution of the condensate is described by a nonlinear
Schrödinger equation called the Gross–Pitaevskii equation. In free space this has the
form:

i~
∂Ψ

∂t
= −~

2∇2Ψ

2m
+ U0|Ψ |2Ψ. (2.3)

For small k excitations this leads to the dispersion relation for longitudinal excitations
in the condensate,

ω =

√
nU0

m
k = ck. (2.4)

This gives the speed, c, of longitudinal sound waves in the condensate. Since the
sign of U0 is the same as that of α (equation (2.2)), this suggests that only a positive
scattering length will lead to a stable condensate, as a negative scattering length
will lead to complex, i.e. unstable excitations. A condensate has been reported in
lithium-7 (Bradley et al. 1995), which is known to have a negative scattering length
(Abraham et al. 1995). In a trap the collapse of the condensate can be held off
by the zero-point energy in the confined gas. Attractive forces between the atoms
still makes the density in the condensate increase as atoms are added to it and for
sufficiently large numbers collapse should occur. Evidence for this collapse has also
been reported for lithium.

The fact that only longitudinal waves are supported by the gas means that it is
a superfluid with a critical velocity c that depends only on the density (and mass)
of the gas and the scattering length. The precise nature of the superfluidity that
can be observed in trapped gases is still a matter of detailed investigations currently
underway.

Cold collisions also determine the rate of evaporative cooling in the technique
used to reach the very low temperatures required for Bose–Einstein condensation.
In this technique, the depth of the magnetic trap holding the atom is decreased, so
that faster atoms escape from the trap, leaving behind the cooler atoms (Ketterle
& Van Druten 1996). For evaporative cooling to be effective, many elastic two-body
collisions are required to maintain thermal equilibrium in the gas. It is the ratio of
these ‘good’ elastic collisions to ‘bad’ or inelastic collisions that determines whether
BEC can be obtained. For sodium and rubidium we know that this ratio is favourable;
for caesium we are still uncertain. Three-body recombination also sets in at higher
densities and produces loss of atoms from a trap. The latter process provides a
formidable challenge to the molecular theorist. A recent advance in the theory of these
three-body encounters has been used to show that the three-body recombination rate
scales with α4 (Fedichev et al. 1996b) in the low-temperature limit (in the case where
the diatomic molecular state produced is weakly bound with zero orbital angular
momentum).
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Figure 1. Ground state potentials for the Cs2 molecule.

The study of cold collisions is also important in other areas. In atomic fountains
for use as frequency standards (Gibble & Chu 1993), collisions between atoms per-
turb the atomic energy levels, and lead to frequency shifts of a few millihertz. Cold
collisions have an effect in atom interferometry, where interactions give an effective
‘refractive index’ for the matter waves (Audouard et al. 1995). In the next section we
shall discuss how the scattering length can be measured using a variety of techniques.
Collisional and three-body recombination loss rates are so low that they have to be
measured in situ, i.e. when performing evaporative cooling or observing the decay of
condensed atoms.

3. Scattering lengths for the alkalis

There are several methods by which scattering lengths that we require to model BEC
can be found. One way is to measure scattering lengths by studying processes that
depend on them, for example the relaxation time of atoms in a magnetic trap (Arndt
et al. 1997; Arlt et al. 1998) or frequency shifts in an atomic fountain (Verhaar et
al. 1993). The intensities of transitions studied by photoassociation spectroscopy
(Thorsheim et al. 1987) can be used to deduce the structure of the long-range molec-
ular wave function and hence the scattering length (a more detailed description of
photoassociation spectroscopy is given below). Photoassociation, when feasible, has
provided by far the most detailed information on the relevant potentials.

The scattering length can, of course, be derived directly from the interatomic
potential. This raises the question of how to determine the interatomic potential and
we shall address this issue below. First we shall discuss the general features of the
potentials that go to making the theory so complex and interesting. The ground-state
interatomic potentials of Cs2 are shown in figure 1.

At large separations the energies are clearly those of the free atoms (the dissoci-
ation limit). As the atoms come closer together, there are attractive forces between
them. At very small separations the forces between the atoms are repulsive, and the
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Figure 2. Cs hyperfine structure.

corresponding energy becomes large and positive. In the intermediate region there is
an attractive potential well, which may give rise to discrete bound states. Figure 1
shows that there are in fact two different interatomic potentials corresponding to the
total electronic spin S = 0 and S = 1 in these singlet and triplet states.

As the singlet and triplet ground states have different interatomic potentials, they
also give rise to different scattering lengths αS and αT. The scattering states formed
by the two atoms involved in the collision depend, due to the hyperfine interaction,
not only on the alignment of the electronic spins, but also those of the nuclei. This
means we cannot describe the states simply in terms of singlets and triplets. At
intermediate separations the hyperfine and exchange interactions are comparable
and one has in general to handle the molecular Hamiltonian in all its complexity as
has been done by, for example, Leo et al . (1998). At large internuclear separations,
the states tend, of course, to the atomic hyperfine states of definite F . For the case
of elastic collisions between doubly polarized atoms, i.e. both atoms in the level
MF = F , the scattering is determined by the triplet potential. This is the case we
shall use to illustrate the sensitivity of the scattering process to the precise form of
the potential.

The hyperfine structure of the caesium atom as a function of applied magnetic
field is shown in figure 2.

We are interested particularly in the states of the atoms that are amenable to
trapping in an inhomogeneous magnetic field, as these are the ones that can be
cooled using evaporation. Trapping in the fields available in the laboratory requires
a low-field seeking hyperfine state (Tiesinga et al. 1992). There are two such states
for caesium as shown in figure 2: the (F,MF ) = (4,+4) and (F,MF ) = (3,−3)
states. The scattering length of the (4,+4) state is given purely by αT, while the
scattering length which applies to the (3,−3) state is a mixture of αT and αS. As the
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Table 1. Scattering lengths of the alkalis

αS (a0) αT (a0) techniques used reference

6Li 45.5± 2.5 −2160± 250
photoassociation

spectroscopy
Abraham et al. (1997)

7Li 33± 2 −27.6± 0.5
photoassociation

spectroscopy
Abraham et al. (1997)

23Na 34.9 77.3

molecular spectroscopy
plus theoretical long-

and short-range
potential

Côté & Dalgarno (1994)

87Rb +99→ +119
photoassociation

spectroscopy
Boesten et al. (1997)

85Rb −1200→ −80
photoassociation

spectroscopy
Gardner et al. (1995)

133Cs −200→ −1100 frequency shifts in
atomic fountain

Verhaar et al. (1993)

−250 theoretical potential Pillet et al. (1997)

combination of the two scattering lengths is dependent on the applied magnetic field
strength, the scattering length for the (3,−3) state may be tunable with magnetic
field (Tiesinga et al. 1992). Such tuning has been achieved in sodium by the MIT
group (Inouye et al. 1998). It may also be possible to tune the scattering length
using nearly resonant light (Fedichev et al. 1996a). This brief discussion shows that
whichever hyperfine state is used, a knowledge of the triplet scattering length is
valuable. However, the triplet scattering length in caesium is poorly known compared
with the scattering lengths of the other alkalis. Table 1 shows some calculated values
of scattering lengths for the alkali metals.

4. Calculation of scattering lengths

In this section we shall look at the sensitivity of scattering lengths to the form of
interatomic potentials and give an assessment of the approximations commonly used.
We shall not discuss the complex issues raised by the multichannel aspects of the
collision process as these have been studied in detail by the NIST theory group (Leo
et al. 1998).

If the potential does not support bound states, then finding the sign of the scatter-
ing length is straightforward; a purely repulsive potential leads to repulsive collisions,
and a positive scattering length, while an attractive potential which supports no
bound states leads to attractive collisions, and a negative scattering length. Where
the potential supports bound states, however, the situation is more complex. The
magnitude and sign of the scattering length depend critically on the exact shape of
the potential, and in particular on the energy of the least-bound state. Hence a very
accurate knowledge of the interatomic potentials is required to calculate the scatter-
ing length. As an example, we will apply our analysis to the case of the ground-state
triplet potential of caesium.
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Figure 3. Typical partial wave.

(a) Low-energy partial wave analysis

In this section we give a brief review of the low-energy scattering theory that is
relevant to the calculation of scattering lengths. It will also enable us to examine
the limitations to a description of low-energy collisions in terms of the scattering
length alone. Let us suppose that this potential is available to us from some method
or other. Since the incoming particles have a small positive energy, the scattering
states of the potential required will be equivalent to unbound molecular states, i.e.
above the dissociation limit of the pair. To obtain the scattering state we solve for
each partial wave that has the asymptotic form,

χl(R) = sin(kR+ δl(k)). (4.1)

Here, δl is the phase shift introduced by the potential, and k is the wave vector
~k =

√
2mE. A typical example of such a partial wave is shown in figure 3.

All the information necessary to calculate the scattered wave function is, of course,
contained in the phase shifts δl(k) and the cross-section σ is given by

σ =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl. (4.2)

If k is sufficiently small as it is in the case of the very low temperatures reached in
evaporative cooling, then only the l = 0 term is important. In this approximation,
we have s-wave scattering. For s-wave scattering, the total cross-section is given by

σ =
4π sin2 δ0(k)

k2 (4.3)

and the scattering is isotropic.
For the simple case of a hard sphere the effect of the potential on the wave function

is simply a shift in the origin of oscillations of the wave. The new wave function is
then

χ = sin k(R− a). (4.4)

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1428 L. S. Butcher, D. N. Stacey, C. J. Foot and K. Burnett

The phase shift introduced by the potential is −ka, and so the cross-section for the
hard sphere potential is simply

σ = 4πa2. (4.5)

Note that for the hard sphere, the cross-section is independent of the energy of the
scattered particle. For a real potential this is only true of the extreme low-energy
limit as we shall see below. A typical unbound wave function for such a potential is
shown in figure 3. In contrast to the hard sphere case, the phase shift now depends
on the energy, and hence wave vector, of the state. The phase shift also depends
sensitively on the precise shape of the potential, as there are many fast oscillations
of the wave function in the region of the potential well. If we wish to know the
cross-section for a particular energy, we now need to calculate the phase shift for
that particular energy, which rather reduces the elegance of the method. However,
as we are interested in the low-temperature limit, we can consider only the phase
shift as the energy tends to zero. If the phase shift remains small (we examine this
approximation in a moment), then sin(δ0(k)) ∼ δ0(k), and equation (4.3) becomes

σ =
4πδ0(k)2

k2 . (4.6)

We define the scattering length in terms of the phase shift as the energy tends to
zero:

α = − lim
k→0

δ0(k)
k

. (4.7)

Using this definition in equation (4.6) then gives

σ = 4πα2. (4.8)

Comparing this to the cross-section for a hard sphere in equation (4.5), we see that
the cross-section for an arbitrary potential at zero energy is the same as that of a
hard sphere with radius α. In the case where the phase shifts are small, δ0(k)/k is
roughly constant for small k. Hence the cross-section is given by equation (4.8) not
only at k = 0, but also for small non-zero values of k. Just how large k can be is the
matter we shall now address.

Figure 4 shows the wave function as the energy tends to zero. The wavelength
tends to infinity, and so the wave function is effectively a straight line for large r.
The intercept of this line, projected back to the x-axis, is the scattering length α.

(b) The effect of bound states of the potential on α

We shall now look more closely at how the phase shift is determined by the inner
part of the potential, and particularly at the significance of the bound states.

There is a finite number of bound energy levels for ground-state interatomic poten-
tials (Gribakin & Flambaum 1993), and hence a ‘least-bound’ level with energy −ε
(ε > 0). The scattering length depends critically on the position of this least-bound
state, relative to the separated atoms (Landau & Lifshitz 1991). If ε is sufficiently
large and the last bound state is not close to the top of the potential, then the
phase shifts δ0(k) remain small, and we have the wave function shown in figure 5a.
If we make a small change in the potential so that ε becomes larger, the least-bound
state moves away from the dissociation limit, and the scattering length decreases. A
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Figure 4. Wave function for low energy, showing the scattering length.

further change will result in a ‘virtual level’ approaching the dissociation limit from
above. Just before this state becomes bound, the scattering length is very large and
negative (figure 5b). As the state becomes bound, the wave function ‘turns over’, as
one extra bound state means one more node in the wave function, and the scattering
length becomes large and positive (figure 5c).

We see that the scattering length depends very sensitively on the position of the
least-bound state, especially when this state is close to the dissociation limit. In the
case where the least-bound state is very close to the dissociation limit, or if there is a
‘virtual’ nearly bound level (i.e. if ε is small), the energy of the scattered particle, E,
is almost ‘in resonance’ with the level −ε, which leads to a significant increase in the
phase shifts and cross-section. In this resonance scattering case, equation (4.8) no
longer applies (Landau & Lifshitz 1991). The cross-section in the case where there
is a weakly bound level can be found by considering Schrödinger’s equation for large
and small R, and then considering the boundary condition that the two solutions
match (Landau & Lifshitz 1991) to give

σ =
2π~

µ(E + ε)
, (4.9)

where E is the energy of the scattered particle above the dissociation limit.

(i) The effective range expansion

We now have two different expressions for the cross-section, valid in opposite
regimes. It is possible, however, to find an expression from equation (4.3) which
is valid in both cases, by using the well-known effective range expansion. The phase
shift can be written as a power-series expansion in k:

k cot δ0(k) = − 1
α

+ 1
2r0k

2 +O(k3), (4.10)
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Figure 5. The wave function for three different cases as described in the text.

where r0 is the effective range. Substituting equation (4.10) into (4.3), and keeping
terms up to k2 gives (Mott & Massey 1965)

σ =
4πα2

k2α2 + (1− r0k2α)
. (4.11)

In the limit of low energies or small |α| this reduces to the scattering length form
of equation (4.8). This expression is also valid when there is a bound state near the
dissociation limit. For a bound state with energy |E| = ~2κ2/2µ, α and r0 are related
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by

− 1
α

= −κ+ 1
2r0κ

2. (4.12)

This form for the cross-section has the advantage that it is applicable across a
wide range of scattering lengths (Leo et al. 1998).

(ii) Validity of approximate expressions for the cross-section

We now have four formulae for the s-wave cross-section, which are predicted to be
valid in different circumstances:

σ =
4π sin2 δ0(k)

k2 (exact), (4.13 a)

which is valid for all δ0;

σ =
4πα2

k2α2 + (1− r0k2α)
(effective range), (4.13 b)

which is valid for reasonably low k, all α;

σ = 4πα2, α = − lim
k→0

δ0
k

(scattering length), (4.13 c)

which is valid for small δ0, which is the case when the least-bound state ε is sufficiently
far from the top of the potential;

σ =
2π~2

µ(E + ε)
(resonance), (4.13 d)

which is valid when the least-bound state is close to the top of the potential.
However, it is not immediately obvious for what values of ε (4.13 b)–(4.13 d) will

be good approximations. The validity of each approximation may also depend on k;
(4.13 c) will always be true for k = 0 by definition, but will become an increasingly
worse approximation for large k.

We have investigated the conditions under which the approximations hold by cal-
culating the phase shifts numerically, using a potential similar to the expected form
of the caesium ground-state triplet potential. For this we use a Morse potential:

U(R) = De{1− e−β(R−Re)}, (4.14)

whereDe is the dissociation energy,Re is the equilibrium separation of the atoms, and
β is a parameter giving the ‘steepness’ of the potential, derived from the rotational
constant Be. We use the theoretical parameters of the caesium triplet potential found
by Speiss (1989):

De = 240 cm−1, (4.15)

ω = 11.2 cm−1, (4.16)

Be = 5.97× 10−3 cm−1, (4.17)

which give the parameters for the Morse potential,

β = 0.720 Å−1, (4.18)

Re = 6.496 Å. (4.19)
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Figure 6. Cross-section against k for different approximations defined in the text. The graphs
on the right give two expanded-scale versions of the main graph to display the slow variations
not apparent in the summary plots.

We calculated the potential from R = 0.008 to 80 Å at intervals of 0.008 Å, and found
values of δ0 for particle energies from 10−7 cm−1 to 2× 10−5 cm−1 (1 µK to 200 µK)
for this potential. On plotting δ0 against k for this potential, we found that the graph
was a good approximation to a straight line. The scattering length is given by −δ0/k
as k → 0. Since the gradient is almost constant, it suggests that the scattering length
model is a good one in this case. To confirm this, we plotted values of σ against k as
calculated from the general expression of (4.13 a), and compared this with the three
models (4.13 b)–(4.13 d) (figure 6).

The values of σ found in the scattering length approximation (4.13 b) agree closely
with the values found from (4.13 a), while those calculated using the resonance
approximation (4.13 c) differ substantially. Hence, in this case, the scattering length
model is the better one. We calculated the position of the highest bound state for
this potential, and found it to be at 0.0064 cm−1 from the dissociation limit.

We then looked at the case when the last bound state is closer to the top of the
well. We varied the parameter β in the Morse potential, and for each value calculated
the phase shift for an energy of 10−7 cm−1. Figure 7 shows the phase shift, the cross-
section σ, and lnσ against β.

Arbitrary rotations of π in the phase are chosen to make the function continuous.
As β decreases, the last bound state moves closer to the dissociation limit, until

the state is only just bound. This confirms the theory of § 4 b; when a state is just
bound, the cross-section becomes very large, and the scattering length passes from
large and positive to large and negative as the potential changes so that the state
is no longer bound. We then chose the value of β to be 0.707 04 Å−1, for which the
state is just bound, and again calculated the phase shifts over the same range of
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Figure 7. (a) Phase shift; (b) cross-section σ; (c) log(σ) against β.
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Figure 8. Cross-section against k for different approximations described in the text, close to a
bound state.

energies. We plotted the cross-section calculated from (4.13 a), and compared the
result with models (4.13 b)–(4.13 d), as shown in figure 8. In this case, the scattering
length model is much worse, and the cross-sections approach those given by the
resonance formula. However, the effective range formula still gives the best fit to the
data.

From these calculations, we conclude that equation (4.8) is not a good approxi-
mation to the cross-section at any but the very lowest energies when there is a state
which is very weakly bound. Since recent observations by Arndt et al. (1997) and Arlt
et al. (1998) suggest that there is such a level for the caesium triplet ground state, we
must look to a better approximation. The effective range expansion provides much
better fits for the addition of only one extra parameter.

In our discussion so far we have restricted ourselves to a qualitative account of
the variation of the scattering length. Because of its potential importance other
detailed calculations have been undertaken by Leo et al. (1998). These calculations
also included the effects of hyperfine structure on the collision complex although it
does not have much influence on the elastic scattering. In these calculations the lack
of sufficiently detailed information on the underlying potential meant they had to
study the collisions for a range of potentials. They were not able, because of the
remaining uncertainties, to rule out a large positive scattering length.

5. Methods for finding interatomic potentials

(a) Ab initio methods

We have shown how the scattering length depends critically on the exact shape of
the interatomic potential, and in particular on the position of the last bound state. In
this section, we will review briefly the methods used to derive interatomic potentials,
discuss the progress to date, and the possibilities for the future.

One method is to use ab initio potentials for the short-range part of the potential
(Krauss & Stevens 1990; Foucrault et al. 1992). These are not generally sufficient
to be used alone except for the lightest alkalis, but are useful to supplement experi-
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mental data. For the long-range part of the potential direct calculations play a more
important role. The form of the attractive force between the atoms at long range is
due to the Van der Waals, dipole–quadrupole, quadrupole–quadrupole, etc., interac-
tions. These lead to a long-range potential of the form:

U(R) = −C6

R6 −
C8

R8 −
C10

R10 · · · . (5.1)

Values of the constants C6, C8, C10, . . . can be calculated theoretically (Marinescu
& Dalgarno 1995; Marinescu et al. 1994), or found experimentally (see, for example,
Weickenmeier et al. 1985). These long-range parameters complement experimental
work, as experiments can often find only the short-range part of the potential. In
a recent estimate of the caesium triplet scattering length, Pillet et al . (1997) used
a theoretical potential and long-range parameters, finding a scattering length of
−250a0, which is within the range found by Verhaar et al. (1993) using experimental
clock shifts. Leo et al . (1998) used ab initio potentials for the short range, whereas
information on the medium-range singlet potential was obtained from experiment.
Perturbation theory results were used for the for the long-range part of the potential.
As mentioned above, this combination of sources does not tie the potentials down
well enough to eliminate the uncertainties in the scattering length. This has been a
continuing source of uncertainty in the analysis of evaporative cooling experiment in
caesium.

(i) Molecular spectroscopy

An alternative method is to find the potentials experimentally using molecular
spectroscopy, i.e. via the measurement of rovibrational structure in the relevant elec-
tronic states. These are the bound molecular states below the dissociation limit that
separates them from the free molecular states that constitute the cold collision com-
plexes that we have been discussing. The range of wavelengths needed for the relevant
electronic transitions for the alkali molecules can be accessed by single-mode tunable
lasers and high-resolution molecular spectra can therefore be produced.

The diatomic alkali molecules are rather unstable at room temperatures, but may
be formed in a supersonic expansion, in which a vapour of the alkali metal, mixed
with an inert carrier gas, is cooled by forcing it through a small nozzle into a vac-
uum. The gas cools in the expansion to temperatures of the order of a few kelvins,
and under these conditions, molecules can form for long enough for spectra to be
observed. In this technique, only the lowest states of the molecule are populated,
and the absorption spectra are correspondingly simple. This aids the spectroscopic
analysis but severely limits the access to information on the threshold region that
is so important for cold collisions. This technique has been favoured for studying
the triplet ground state of caesium (Kim & Yoshihara 1993; Diemer et al. 1991).
We have studied caesium dimers using cold molecules formed in this way, probed
with a tunable dye laser (Butcher et al. 1999), and measuring the total laser induced
fluorescence; however, in common with previous work, we find that it is only possi-
ble to access the few very lowest vibrational levels of the ground state in this way.
The analysis of the spectra is exceedingly complex due to the presence of hyperfine
structure. In the lighter alkalis the availability of high-resolution spectra linked with
the recent development of efficient multichannel computational methods has led to a
very full understanding of the spectra, in spite of the complexities due to hyperfine
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Figure 9. Transitions occurring in photoassociation spectroscopy. The variation in intensity gives
information on the nodes of the wave function. In the figure, transition ‘a’ corresponds to peak
and transition ‘b’ to a minimum in the intensity observed.

structure. It is to be hoped that a similar outcome is not too far in the future for
caesium.

(ii) Photoassociation spectroscopy

An alternative and complementary technique, by which the highest lying levels of
the ground state can be accessed, is that of photoassociation spectroscopy. Photoas-
sociation spectroscopy was first proposed in 1987 by Thorsheim et al. (1987). In this
technique alkali atoms are first confined in a magneto-optical trap or far off resonance
optical dipole force trap (FORT). A pair of colliding ultracold atoms in the trap can
resonantly absorb a laser photon to produce a bound, excited molecule. Photons
are provided either by an additional laser, or by the FORT laser itself. As the laser
is tuned, absorption peaks occur when the frequency corresponds to a transition
between the dissociation limit of the ground state and a bound vibrational level of
the excited state (see figure 9). The excited state molecules formed may then decay
either to a bound ground-state molecule, or to an unbound atom pair (Abraham et
al. 1996).

Either the fluorescence from the transition or the number of atoms in the trap can
be monitored: the molecules which drop back to the ground state are lost from the
trap. Normally we would expect to see only broad diffuse bands arising from free-
bound transitions; but in the case of ultracold laser cooled atoms, the energy spread of
the initial colliding atoms is very small (21 MHz at T = 1 mK). Hence the linewidth of
these free-bound transitions will be comparable to that of bound–bound transitions;
the technique is analogous to the laser-induced fluorescence (LIF) technique used
in our experiments. The resulting spectrum gives the energy levels of the excited
molecular state. In addition, information on the ground-state potential and scattering
wave function can be obtained from line shapes and intensity distributions.
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Figure 10. Transitions for two-photon photoassociation spectroscopy.

The technique can be extended to give information about the vibrational levels of
the ground-state potential, not only the dissociation limit (Abraham et al. 1995). To
do this the photoassociation laser frequency ωl is fixed on a resonance, increasing the
loss from the trap, and so decreasing the trap fluorescence. A second laser of frequency
ωbb is then used to tune over transitions between the excited state, and bound states
of the ground-state potential. When this second laser is tuned to a resonance, the rate
of loss from the trap is reduced, and the trap fluorescence increases (see figure 10).

Photoassociation spectroscopy has two major advantages over LIF. Firstly, as the
initial state is formed in a collision, both singlet and triplet states can be studied.
Secondly, it is the higher lying states needed to calculate scattering lengths which
are excited; these cannot be studied easily using LIF.

However, photoassociation spectroscopy is difficult. Although it has been used suc-
cessfully to study Li2, Na2 and Rb2 and K2, an attempt to observe photoassociation
in caesium at NIST was unsuccessful; in Paris, Pillet et al . have now made prelim-
inary observations. Caesium presents a particular problem as the photoassociation
rate is predicted to decrease with increasing atomic mass from Li to Cs; observations
of photoassociation in caesium by studying trap loss in an MOT are also made more
difficult because the rate of trap loss due to photoassociation also decreases with
increasing mass (Pillet et al. 1997).

6. Future work

The rapid expansion in the study of ultracold gases and condensates using evap-
orative cooling is likely to continue in the next decade. This means we shall have
to understand and predict the outcome of nanokelvin collisions in magnetic and
optical traps. We anticipate the need for interatomic potentials for mixed-species
collisions in magnetic and laser fields. We should also be thinking about how we can
perform experiments that give us a better handle on the three-body processes that
limit the densities that can be reached in condensates. The atom we chose to study
in Oxford has proven particularly intractable. In order to resolve the uncertainties
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in the caesium interatomic potential, it appears it will be necessary to extend the
present bound–bound spectroscopy to the use of Raman transitions that can access
the high lying states of the ground triplet potential. Meanwhile, experiments planned
in hybrid (magnetic plus optical trapping) may well resolve the question of whether
BEC can be reached.

We thank the EPSRC for their support.
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Côté, R. & Dalgarno, A. 1994 Phys. Rev. A 50, 4827.
Davis, K. B., Mewes, M.-O., Andrews, M. R., Van Druten, N. J., Durfee, D. S., Kurn, D. M. &

Ketterle, W. 1995 Phys. Rev. Lett. 75, 3969.
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